Noise induced in optical fibers by double Rayleigh scattering of a laser with a 1/fν frequency noise.

نویسندگان

  • Michael Fleyer
  • Seth Heerschap
  • Geoffrey A Cranch
  • Moshe Horowitz
چکیده

We study, theoretically and experimentally, intensity noise induced by double Rayleigh scattering in long optical fibers. The results of the theoretical model are compared to experimental results performed with a high-coherence-length laser with a frequency noise spectrum that is dominated by 1/fν noise. Excellent quantitative agreement between theoretical and experimental RF spectra were obtained for frequencies as low as 10 Hz and for fiber lengths between 4 and 45 km. Strong low-frequency intensity noise that is induced by 1/fν frequency noise of the laser may limit the performance of interferometric fiber optic sensors that require high-coherence-length lasers. The intensity noise due to double Rayleigh backscattering can be suppressed by reducing the coherence length of the laser. Therefore, the intensity noise has a complex and non-monotonic dependence on the 1/fν frequency noise amplitude of the laser. Stimulated Brillouin scattering will add a significant noise for input powers greater than about 7 mW for a 30 km length fiber.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive model for studying noise induced by self-homodyne detection of backward Rayleigh scattering in optical fibers.

Backward Rayleigh scattering in optical fibers due to the fluctuations that are "frozen-in" to the fiber during the manufacturing process may limit the performance of optical sensors and bidirectional coherent optical communication systems. In this manuscript we describe a comprehensive model for studying intensity noise induced by spontaneous Rayleigh backscattering in optical systems that are...

متن کامل

Superlinear growth of Rayleigh scattering-induced intensity noise in single-mode fibers.

Rayleigh scattering generates intensity noise close to an optical carrier that propagates in a single-mode optical fiber. This noise degrades the performance of optoelectronic oscillators and RF-photonic links. When using a broad linewidth laser, we previously found that the intensity noise power scales linearly with optical power and fiber length, which is consistent with guided entropy mode R...

متن کامل

Suppression of SBS-Induced RF Phase Noise in an RF-Photonic Link

In this paper, we examine and suppress the effects of stimulated Brillouin scattering on the phase noise of a 10 GHz signal transmitted over an RF-photonic link. We demonstrate the appearance of interference peaks in the RF phase noise of a microwave signal transmitted through a 10 km optical fiber link. We attribute these peaks to double Brillouin scattering using a reduced model. We determine...

متن کامل

Suppression of Rayleigh-scattering-induced noise in OEOs.

Optoelectronic oscillators (OEOs) are hybrid RF-photonic devices that promise to be environmentally robust high-frequency RF sources with very low phase noise. Previously, we showed that Rayleigh-scattering-induced noise in optical fibers coupled with amplitude-to-phase noise conversion in photodetectors and amplifiers leads to fiber-length-dependent noise in OEOs. In this work, we report on tw...

متن کامل

Enhanced Modulation and Noise Characteristics in 1.55 µm QD Lasers using Additional Optical Pumping

The modulation response, relative intensity noise (RIN) and frequency noise (FN) characteristics of quantum dot (QD) lasers are investigated theoretically in the presence of an external optical beam. Using small signal analysis of the rate equations for carriers and photons, it is demonstrated that by injecting excess carriers into the QDs excited state through optical pumping, the modulation r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 41 6  شماره 

صفحات  -

تاریخ انتشار 2016